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Supersonic parachute needs

4+ Weapons systems

¢ REV recovery

¢ space vehicle recovery

¢ space vehicle descent
SEE S

+ Access to high altitude
landing sites on Mars

+ Delivery of large
payloads to Mars

+ Mach 3 performance
needed
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Requirements

+ high drag to weight ratio
+ predictable drag and inflation performance
+ act to stabilise not destabilise the parachute-paylead system

¢ withstand high dynamic pressure leading or for seme planetary
entry scenarios function at low: dynamic pressure

¢ high aeroelastic loading (ribbon flutter and pulsation)
¢ aerokinetic heating

¢ also perform at subsoenic speeds
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Supersonic parachute behavior

+ Current knowledge
+ Understanding poor
+ Few data exist
+ Testing has been ad hoc
+ Data fail to separate specific effiects
¢+ Data incomplete

+ Parachute behavior adversely: afifected by SUpersonic
flow

+ Drag loss at low! supersonic speeds

+ Drag loss for some types (DGB) in transonic regime
+ Reduction of flying diameter

+ Pulsation of canopy: mouth
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Ribbon parachute drag| coefficient:

BEGINNING OF SEVERE CANOPY |
PULSATION AND RIBBON FLUTTER
ON FLAT CIRCULAR AND CORICAL
RIBBON TYPE CANOPIES
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Huygens DGB pilot chute ogive wake
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Supersonic parachute behavior

Huygens Aerodynamic Database - nominal Re = 50000
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Supersonic parachute behavior

+ Tests suggest that the performance of'a parachute in
transonic and supersonic flow is strongly infllenced
o)V

€ Ccanopy porosity

+ the size of the forebody (for axisymmetric bodies
forebody diameter Dg) compared to the diameter of
the parachute DO represented by the ratio Dg / Dg

¢ the distance between the base ofi the forebody and the
parachute skirt (x7) represented by the ratio X7 / Dg;

+ the shape of the fiorebody: (streamlined or bluff);
¢ line length;

¢ detail canopy design;

+ Mach number
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Supersonic Flow

+ Compressibility

+ High energy

¢ energy transformations
Shock waves

¢ a=(yRN)%>

¢« M=v/a
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Property changes across attached and detached' shock
WaVes




Flow around a hollow hemisphere Mach 2.0
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Drag of bluff body
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Hemisflo - M 1.9

Shock waves
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Spiked bodies

Shock Wave
e
/
M=20 ——
Separated flow:
Shock Wavesy/
Loing Celie \.
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Flow around a hollow hemisphere;and a DGB: in
the wake of a streamlined forebody M 2.0
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Parachute surface pressures
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Supersonic parachute behavior

Mach Number




Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp

+ Recent use of FSI starts
to reveal complex flow
physics around
parachutes in
supersonic flow

+« ALE code
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp




Flow around a disk-gap-band parachute; at
Mach 1.5, trailing distance 3.1 Dp




Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp
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Flow around a disk-gap-band parachute at

Mach 1.5, trailing distance 3.1 Dp
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reverse flow unstable

probe base flow
completely disrupted -
region of high pressure
behind probe

parachute immersed
low energy, subsonic
flow

pressure inside the
canopy is now low

pressure in canopy
very low

canopy starts to
collapse

flow ahead of the
canopy confused and
subsonic



Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 3.1 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp

= Ry R % :
Fringe Levels y Y Fringe Levels

5000402 _

v 7

~ra b me



Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp

Fringe Levels
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Flow around a disk-gap-band parachute at
Mach 1.5, trailing distance 4.8 Dp
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Supersonic flow around parachutes

+ Dominated by interaction with viscousi wake

¢ At low supersonic Mach number conical shock
forms and reduces drag

+ At higher Machinumber forebody: base flow: is
disrupted cyclically: andi parachute pulsation
commences with large dragi loss
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Wake effects

Shock 3

Shock 1 Shock 2
M
- = \ A A .
Forebody

Stagnation Zone

CLOSED WAKE

Shock 1

OPEN WAKE Stagnation Zone



Wake modification

¢+ Accepted wisdom: x7>100D;3

+ Moseev's criterion: x7>1.50z + 2.50p

¢ Current work would suggest be 4-5 parachute diameters behind
the payload!

¢ Galileo was 5 Dp
+ Huygens is 4.9 Dp
¢ Viking was 2.7 Dp
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Ribbon flutter

~ra b me

modified pressure distributioniacting on a flexible canopy’ causes
mouth area to vary

for flat circular or conical ribbon designs if the canopy: flying
diameter reduces then there is excess material at the canopy
skirt

excess material may be subject to flutter

may either be lifted out from the axis of the canopy or pushed
inwards depending on| incidence

oscillations are set up: under' certain conditions causing
variations in mouth diameter

these should not be confused with the pulsation



Flat ribbon parachute

{ A reguiar polygon of NV sides) '
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Conical Ribbon Parachute
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Equifio Parachute

+ Elimination of ribbon
flutter

¢ 2 D, lines
improved area ratio
¢ Improved shape
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Hemisflo Parachute

+ More refined shape
+ effective to Mach 3

> 0
T




Hyperflo parachute

¢ Demonstrated at M 4.35
and Mach 6.0

+ refined to parasonic
hyperflo and tested at M
5.6




Supersonic-X parachute

+ Tested from M1.75 to
Mach 8.0

Gore Coordinates:
h e
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Ballute

+ Internal or ram-air
inflation

¢ 80° forward cone
¢ ellipsoidal rear

¢ burble fence

¢ tested to M 10.0

v
Profile. Coordinates:
}’XDC X/’DC.
1.177
1.158
1.118
.975
780
.574
425 CONSTRUCTION
312 . PROFILE
.202
0825
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Disk-Gap-Band

+ tested to M 2.72
+ low @




IHermes testing

+ Obtain comparative data for generic
supersonic decelerators:
+ Cd
+ stability
< With known and decumented
+ forebody geometry
+ mounting configuration / tunnel dimensions
+ Wake
+ trailing distance
¢ parachute detail designs
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Hermes Testing

¢ Test decelerators:
¢ supersonic-X
+ conical ribbon
¢ equiflo
+ hyperfio
¢ ballute

+ Critical dimensions
¢ D, = 110 mm
+ [,= 330 mm
¢ D,/ D= 2.44
¢ X,/ Dg= 8.4
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HUuygens testing

+ AEDC 16T tunnel
¢ 3/16 scale models
¢ aeroshell and ogive forebodies
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Ribbon parachute drag| coefficient:

BEGINNING OF SEVERE CANOPY |
PULSATION AND RIBBON FLUTTER
ON FLAT CIRCULAR AND CONICAL |
bon haaln RIBBON TYPE CANOPIES
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Drag coefficient versus Mach number:
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Drag coefficient vs M
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Drag coefficient vs M
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Huygens DGB main ogive wake
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Huygens DGB main - probe wake
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Galileo testing — transonic dragiloss




Viking testing — transonic drag less
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0.6 08 10 1.2 14 1.6
o0
Lander Forebody.




Drag summary

+ Conical ribbon - effective to M2.0
+ Hemisflo - effective to M3.0
¢ Hyperflo- < M 4.0

+ Ballute - good at alllMach numbers but low
drag coefficient

¢ Supersonic-X
+ DGB - good for lew g up to M2.0
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Stability vs M
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Stability vs M
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Supersonic Inflation

¢ subsonic flow: K= v, &/ D,
¢ supersonic flow:
¢ Koo/ py) = V. L[ D, - Greene
¢ Kuy [ u) = v, 4 Dy

+ rhese are virtually: eguivalent since for continuity
U, p; = U,p, across a shock wave
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Inflation distance as function of Mach number
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Supersonic Inflation

+ Use a code that explicitly includes added
Mass

+ Experimentally derived dimensionless
diameter evolution

+ Use C4p before wake interaction effects
become apparent (subsenic)
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Aerodynamic Heating

+ stagnation temperature

¢ To=Tol1+ A (y-1)[ 2 MF]
¢ convection

¢ Q=hn(Ts-Ty)
+ radiation

¢ Q=-¢co0T,)/
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Aerodynamic heating
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Aerodynamic Heating

+ high temperature materials
+ Nomex
+ Kevlar
+ steel wire
+ Ceramics
+ PBO
¢ M5
¢ protective coatings
+ internal cooling
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Design guide 1

+ choose a parachute design that will' be; effective; over
the complete range of Mach numbers

¢ for low supersonic velocities (Up to Mach 2) a conical
ribbon parachute is usually the best option

¢ for operation at low dynamic pressure at up to Mach
2 + a disk-gap-band should be considered

+ for velocities up ter Mach 3 select a hemisfio

€ d
d
€ d
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pove Mach 3 a hyperfiloror supersonic-X may. be
pplicable

pove Mach 4 it is generally better to use al ballute



Design guide 2

~ra b me

sometimes a multi-stage design is worth
consideration using a specialist high Mach number
device (such as the ballute ) as the first stage with a
parachute which hasi better low supersonic and sub-
sonic performance; (for example ai conical ribbon
parachute) as the second stage

parachutes with shaped gores perform: significantly
better than conical or flat ribben parachutes in
supersonic flow

+ ribbon flutter is much reduced

¢ the onset of pulsation is delayed

ensure trailing distance is large 5 Dp is proposed



Design guide 3

¢ longer suspension lines (at least 2D,) improve the
performance of all parachute designs at supersonic
speeds
+ drag performance with increasing Mach number'is improved
< inflation stability is markedly better
+ ribbon flutter is substantially reduced
¢ the onset of pulsation delayed

¢ structural loads imposed during operation in
supersonic flow aré greater than those seen at
equivalent dynamic pressures in subsonic flow
+ ribbon flutter and canopy shape changes
¢ Increased design margins are needed

¢ careful detailed design, particularly’ inithe skirt region, Is
Important
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Design guide 4

~ra b me

if aerodynamic heating is important use high temperature
capable materials throughout the design and additionally
consider coatings

total heat pulse is important net the stagnation temperature

deployment system - orderly: deployment even more important
at supersonic speedsithan at subsonic; velocities

WHILST ALL ASPECTS OF SUPERSONIC AERODYNAMICS NOT
PERFECTLY UNDERSTIOOD
WE CAN DESIGN SUCCESSFUL SYSTEMS



« ANY QUESTIONS??
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